J. Ocean Univ. China (Oceanic and Coastal Sea Research) https://doi.org/10.1007/s11802-021-4758-4 ISSN 1672-5182, 2021 20 (6): 1469-1482 http://www.ouc.edu.cn/xbywb/ E-mail:xbywb@ouc.edu.cn

Genome-Wide Analysis of the Cyclin-Dependent Kinases (CDK) and Cyclin Family in Molluscs

YANG Qiong¹⁾, YU Hong^{1), 2), *}, and LI $Qi^{1), 2}$

1) Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao 266003, China

2) Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

(Received September 7, 2020; revised November 16, 2020; accepted February 9, 2021)

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

Abstract Cell cycle regulation that plays a pivotal role during organism growth and development is primarily driven by cyclindependent kinases (CDKs) and Cyclins. Although CDK and Cyclin genes have been characterized in some animals, the studies of CDK and Cyclin families in molluscs, the ancient bilaterian groups with high morphological diversity, is still in its infancy. In this study, we identified and characterized 95 CDK genes and 114 Cyclin genes in seven representative species of molluscs, including *Octopus bimaculoides*, *Pomacea canaliculata*, *Biomphalaria glabrata*, *Lottia gigantea*, *Mizuhopecten yessoensis*, *Crassostrea gigas* and *Aplysia californica*. Genes in CDK and Cyclin families were grouped into eight and 15 subfamilies by phylogenetic analysis, respectively. It should be noted that duplication of *CDK9* gene was detected in *P. canaliculate*, *L. gigantea* and *M. yessoensis* genomes, which has never been recorded in animals. It is speculated that duplication may be the main course of expansion of the CDK9 subfamily in the three molluscs, which also sheds new light on the function of *CDK9*. In addition, Cyclin B is the largest subfamily among the Cyclin family in the seven molluscs, with the average of three genes. Our findings are helpful in better understanding CDK and Cyclin function and evolution in molluscs.

Key words molluscs; CDK; Cyclin; genome-wide analysis

1 Introduction

Cyclin-dependent kinase (CDK) is a large family of serine/ threonine-specific kinases that control the eukaryotic cell cycle progression by binding cyclin partners (Pines, 1995; Johnson and Walker, 1999; Murray, 2004). During the cell cycle, cyclins accumulate and degrade periodically, and CDK/cyclin complexes are activated at specific cycle phases (Morgan, 1997). In addition to cell cycle regulation, CDKs and Cyclins are also involved in transcription, RNA processing, apoptosis and neurogenesis (Pines, 1995; Malumbres, 2011; Hydbring *et al.*, 2016).

The original member of CDK family was found in genetic screens for feast (Beach *et al.*, 1982), and the first Cyclin gene was identified in sea urchin eggs (Evans *et al.*, 1983). Subsequently, many members of the two families were identified in other species based on the conserved protein kinase domains. As the results, 6 to 8 CDKs and 9 to 15 Cyclins were identified in Fungi; 8 to 52 Cyclin-like protein and 25 to 29 CDK proteins were detected in plants (Wang *et al.*, 2004; La *et al.*, 2006; Ma *et al.*, 2013); and 11 to 28 Cyclin and 14 to 20 CDK genes were found in ani-

mals (Cao et al., 2014; Malumbres, 2014). The increased complexity of cell cycle regulation in animals and plants might account for the more members of CDK and Cyclin families than in fungi, while the increased gene duplication events in plant genomes might explain the higher number of CDKs and Cyclins than in animals (Wang et al., 2004). Researches on invertebrates have focused on some organisms, such as nematodes and sea urchins. Six CDK and 11 Cyclin genes are present in Caenorhabditis elegans (Boxem, 2006), 11 CDK and 14 Cyclin genes have been identified in Strongylocentrotus purpuratus (Cao et al., 2014). Despite their functions in eukaryotic cell cycle regulation, CDKs and Cyclins have undergone an extraordinary degree of evolutionary divergence and specialization. Therefore, investigation of the evolutionary history of CDKs and Cyclins will enhance our understanding of animals and plants evolution and organism development.

Several studies have been conducted to disclose the evolutionary features of CDK and Cyclin families. *Cyclin A*, *Cyclin B3* and *Cyclin B* were conserved in animals and the number of *Cyclin A* and *B* varied among different organisms (Nieduszynski *et al.*, 2002). It was indicated that cell-cycle related CDKs became more evolutionarily and functionally diverse with transcription complexity increasing (Guo and Stiller, 2004). A comparative phylogenetic analysis of Cyclins from protists to plants, fungi and ani-

^{*} Corresponding author. Tel: 0086-532-82032773 E-mail: hongyu@ouc.edu.cn

mals suggests that Cyclins can be divided into three groups (group I, groups II and III) (Ma *et al.*, 2013). Phylogenetic analysis of CDK and Cyclin proteins in 18 premetazoan lineages indicate that CDK4/6 subfamily and eumetazoans emerged simultaneously, while the evolutionary conservation of the Cyclin-D subfamily also tightly linked with eumetazoan appearance (Cao *et al.*, 2014).

Mollusca, the most speciose phylum in the marine realm with highly diverse body forms and lifestyles, plays an important role in evolution and ecosystem. Many molluscs especially the bivalve can attain old ages (over 100 years old), such as the Geoduck clam (Panopea abrupta), the freshwater pearl mussel (Margaritifera margaritifera), and the ocean quahog (Arctica islandica) (Ziuganov et al., 2000; Strom et al., 2004; Wanamaker et al., 2008) which are increasingly regarded as longevity models (Abele et al., 2009; Bodnar, 2009). Despite remarkable evolutionary and biological significance, knowledge of CDK and Cyclin families in Mollusca is still in its infancy. Recently along with the rapid development of high-throughput sequencing technologies, the number of sequenced molluscan genomes has been increased rapidly (Simakov et al., 2013; Albertin et al., 2015; Wang et al., 2017), which provides a unique opportunity to enhance our understanding of CDK and Cyclin families in molluscs.

In this study, we identified and characterized CDK and Cyclin genes in seven species of mollusc based on the genome-wide data, including *Octopus bimaculoides*, *Pomacea canaliculata*, *Biomphalaria glabrata*, *Lottia gigantea*, *Mizuhopecten yessoensis*, *Crassostrea gigas* and *Aplysia californica*. Phylogenetic analysis and gene structure comparison of these proteins are conducted. The results reveal detailed evolutionary information of CDKs and Cyclin partners, providing insights into potential function of CDK and Cyclin genes in molluscs.

2 Materials and Methods

2.1 Database Searching and Identification of CDK and Cyclin Genes

To identify CDK and Cyclin genes in seven representative species of mollusc, including O. bimaculoides, P. canaliculate, B. glabrata, L. gigantea, M. yessoensis, C. gigas, and A. californica, their whole genomic sequence database from NCBI were searched using the query sequence generated from whole CDK and Cyclin family members in humans (Homo sapiens), vase tunicate (Ciona intestinalis), fruit fly (Drosophila melanogaster), purple sea urchin (Strongylocentrotus purpuratus), and starlet sea anemone (Nematostella vectensis) (Cao et al., 2014). Tblastn was used to get the initial pool of CDK and Cyclin with a minimum e-value of 1e-5. After deleting the repeated entries, a unique set of sequences were kept for further analysis. All putative CDK and Cyclin family proteins collected by Blast searching were carried out a preliminary phylogenetic analysis. We verified the putatively identified Cyclin proteins by searching against SMART databases (http://smart.emblheidelberg.de/).

2.2 Phylogenetic Analysis and Classification of the CDK and Cyclin Gene Families

To investigate the evolutionary relationship of the CDK and Cyclin families, the CDK and Cyclin amino acid sequences of seven mollusc species and several representative metazoans, including H. sapiens, C. intestinalis, D. melanogaster, N. vectensis, S. purpuratus and Danio rerio, were used to perform the phylogenetic analysis. All the sequences of CDK genes were aligned using ClustalW (http://www. ebi.ac.uk/clustalw/) with the default parameters. Gblocks (http://molevol.cmima.csic.es/castresana/index.html) was used to eliminate poorly aligned positions and divergent regions. The phylogenetic trees were built with MEGA 7.0 using the Neighbor-joining (NJ) method with 1000 repetitions for the bootstrap test. Since the Cyclin family is not conserved enough like CDK family, the genes of Cyclin family were aligned with MAFFT v7.402 (Katoh and Standley, 2013) and poorly aligned sequences were removed. Only the conserved region (Cyclin-N and -C domains) were used for further phylogenetic analyses to identify the maximum likelihood (ML). ML constructed using RAxML v8.2.12 (Stamatakis, 2014) as implemented in the CIPRES Science Gateway v. 3.3 (http://www.phylo.org/index.php) with 1000 bootstrap and LG model. The tree was displayed with Interactive Tree of Life (ITOL, https://itol.embl.de/).

2.3 Sequence Analysis and Structural Characterization

The Compute PI/MW tool at Expert Protein Analysis System (ExPAsy) site (https://web.expasy.org/compute_pi/) was used to calculation coding sequence (CDS), length molecular weight (MW) and isoelectric point (pI). According to the online software BUSCA (http://busca.biocomp.unibo. it/), all the subcellular localizations could be predicted. We used the MEME (http://meme-suite.org/tools/meme) to analyze the motifs of CDK and Cyclin proteins with the following parameter: minimum width of motif, six; maximum width of motif, 50; and number of motifs, 10. The ITOL was used to visualize the results. According to the result of the GSDS software (Hu et al., 2015), the exon-intron structures of CDKs and Cyclins were shown in ITOL. To further analyze CDK9 genes, we use CLUSTAL W (https://www.genome.jp/tools-bin/clustalw) to get sequence alignment of the CDK9 genes from seven mollusc species, H. sapiens (Has-CDK9) and S. purpuratus (Spu-CDK9). Sequence alignment was exported into ESPRIPT 3.0 (http://espript.ibcp. fr/ESPript/ESPript/). Structural features were described with CDK9 in human (extracted from the CDK9-CyclinT complex, PDB code: 3TN9).

3 Results

3.1 Identification of CDK and Cyclin Genes

As summarized in Table 1, a total of 209 genes were identified in the seven molluscs, including 95 genes of CDK family and 114 genes of Cyclin family. The number of CDK genes was from 13 to 15, while the number of Cyclin genes varied from 13 to 21. The component of CDK and Cyclin family members of each species was showed in Figs.1 and 2.

Table 1 Distribution of CDK and Cyclin family protei	ns
in representative species of Mollusca	

Species	Class	CDK	Cyclin
Octopus bimaculoides	Cephalopoda	13	16
Pomacea canaliculata	Gastropoda	14	15
Biomphalaria glabrata	Gastropoda	13	13
Lottia gigantea	Gastropoda	14	18
Aplysia californica	Gastropoda	14	15
Mizuhopecten yessoensis	Bivalvia	14	18
Crassostrea gigas	Bivalvia	13	19
Total		95	114

Fig.1 Schematic representation of the distribution of different CDK family members in mollusc species. A black dot indicates the presence of clear homologs of CDK family members. Phylogenetic relationships of these organisms are derived from COI genes using MEGA 7.0 by the neighbor joining.

The bioinformation on the CDK and Cyclin family genes of seven species is provided in Table 2 and Table 3, including name, identifier (ID), number of amino acid (aa), iso-

Fig.2 Schematic representation of the distribution of different Cyclin family members in mollusc species. A black dot indicates the presence of clear homologs of Cyclin family members. Phylogenetic relationships of these organisms are derived from COI genes using MEGA 7.0 by the neighbor joining.

electric points (pIs), molecular weight (MW), subcellular localization and protein length. The lengths of the proteins encoded by the CDK genes is from 207 to 1538 aa, with the predicted MW ranging from 23.57 to 172.26 kD. The lengths of the Cyclin proteins varies from 119 to 1162 aa, with the predicted MW varying from 13.48 to 128.23 kD. Among the seven mollusc species, the average lengths of CDK and Cyclin proteins in L. gigantea are far shorter than those in the other species. For CDK family, the pI was between 5.2 and 9.65, with an average pI of 7.94. Overall, 72% of the CDK family proteins had a pI more than 7, suggesting that the proteins are rich in acidic amino acids. For Cyclin family, the pI was between 4.56 and 10.21, with an average pI of 7.03. Among the seven molluscs, Cyclin proteins in P. canaliculate, L. gigantea and B. glabrata are rich in acidic amino acids, while Cyclin proteins in A. californica, C. gigas and O. bimaculoides are rich in alkaline amino acids.

Table 2 The bioinformation of the CDK family genes in seven mollusc species

Species	Gene name	Gene ID	aa	MV(Da)	pI	SL
	Cyclin-dependent kinase 1 like	LOC101853987	349	40324.45	5.69	Cytoplasm
	Cyclin-dependent kinase 2 like	LOC101846074	316	35923.41	7.11	Cytoplasm
	Cyclin-dependent kinase 4 like	LOC101849290	418	47098.35	6.80	Mitochondrion
	Cyclin-dependent-like kinase 5	LOC101853437	294	33562.51	7.03	Cytoplasm
	Cyclin-dependent kinase 7 like	LOC101863685	341	38453.22	7.71	Cytoplasm
	Cyclin-dependent kinase 8 like	LOC101862428	473	54112.66	8.57	Cytoplasm
Anhaia galiforniga	Cyclin-dependent kinase 9 like	LOC101857999	369	42480.35	9.23	Cytoplasm
Apiysia caiijornica	Cyclin-dependent kinase 10 like	LOC101858693	402	45334.39	7.13	Cytoplasm
	Cyclin-dependent kinase 11B like	LOC101864621	779	89745.12	5.75	Nucleus
	Cyclin-dependent kinase 13 like	LOC101847916	1212	135440.16	9.46	Nucleus
	Cyclin-dependent kinase 14 like	LOC101862276	539	60331.54	9.28	Nucleus
	Cyclin-dependent kinase 16 like	LOC101854558	272	31371.04	9.34	Nucleus
	Cyclin-dependent kinase 18 like	LOC101848503	799	89199.05	9.14	Nucleus
	Cyclin-dependent kinase 20 like	LOC101850770	347	39383.58	6.54	Cytoplasm
	Cyclin-dependent kinase 1 like	LOC106073179	308	35667.42	6.47	Cytoplasm
	Cyclin-dependent kinase 2 like	LOC106065664	306	34857.50	7.66	Cytoplasm
	Cyclin-dependent kinase 4 like	LOC106060252	402	45768.19	8.14	Cytoplasm
	Cyclin-dependent-like kinase 5	LOC106076847	281	32122.44	8.86	Cytoplasm
	Cyclin-dependent kinase 7 like	LOC106074176	342	38653.85	8.69	Cytoplasm
	Cyclin-dependent kinase 8 like	LOC106060752	493	56610.84	8.48	Cytoplasm
Biomphalaria glabrata	Cyclin-dependent kinase 9 like	LOC106065241	323	37291.44	9.30	Cytoplasm
	Cyclin-dependent kinase 10 like	LOC106060771	371	42633.41	8.65	Cytoplasm
	Cyclin-dependent kinase 11B like	LOC106053129	800	92309.28	5.2	Nucleus
	Cyclin-dependent kinase 13 like	LOC106051172	1198	134986.17	9.49	Nucleus
	Cyclin-dependent kinase 14 like	LOC106070902	518	57886.68	9.26	Nucleus
	Cyclin-dependent kinase 17 like	LOC106056030	526	59768.53	8.89	Cytoplasm

(to be continued)

(continued)

<u> </u>	2	~ ~		NOVE :	•	~
Species	Gene name	Gene ID	aa	MV(Da)	pI	SL
Biomphalaria glabrata	Cyclin-dependent kinase 20 like	LOC106077158	345	39103.31	6.40	Cytoplasm
	Cvclin-dependent kinase 1	LOC105346130	302	34767.45	8.77	Cytoplasm
	Cvclin-dependent kinase 2	LOC105325500	273	31119.97	6.39	Cytoplasm
	Cvclin-dependent-like kinase 5	LOC105344147	307	35163.58	7.08	Cytoplasm
	Cvclin-dependent kinase 6	LOC105327718	331	37997.29	5.56	Cytoplasm
	Cvclin-dependent kinase 7	LOC105317788	341	38673.04	8.90	Cytoplasm
	Cvclin-dependent kinase 8	LOC105330051	439	50809.92	8.87	Cytoplasm
Crassostrea gigas	Cvclin-dependent kinase 9	LOC105331277	401	45542.43	9.29	Cytoplasm
00	Cvclin-dependent kinase 10	LOC105319320	379	43230.11	8.34	Cytoplasm
	Cvclin-dependent kinase 11B	LOC105335549	805	93715.25	5.66	Nucleus
	Cvclin-dependent kinase 12	LOC105347499	1254	140359.71	9.65	Nucleus
	Cyclin-dependent kinase 14	LOC105345433	563	63876.56	9.10	Cytoplasm
	Cyclin-dependent kinase 17	LOC105323040	487	55235.06	8.57	Nucleus
	Cyclin-dependent kinase 20	LOC105329436	343	38937.04	6.54	Cytoplasm
	Hypothetical protein	GeneID20242291	255	29038 46	6.08	Cytoplasm
	Hypothetical protein	GeneID20242231	235	29038.40	6.01	Cytoplasm
	Hypothetical protein	GeneID20241075	740 760	53230.22	8 75	Cytoplasm
	Hypothetical protein	GeneID20244239	215	35223.91	8.75 8.20	Cytoplasm
	Hypothetical protein	GeneID202344/3	380	15241 00	8.63	Cytoplasm
	Hypothetical protein	GeneID20234130 GeneID20230706	320	45244.09 37878 00	8.05	Cytoplasm
	Hypothetical protein	GeneID20237730	385	<u>14433 31</u>	8.05	Cytoplasm
Lottia gigantea	Hypothetical protein	GeneID2024/140	355	40001 65	927	Cytoplasm
	Hypothetical protein	GeneID20243903	370	40991.03	9.52	Cytoplasm
	Hypothetical protein	GeneID20244020	421	48908 21	8.82	Cytoplasm
	Hypothetical protein	GeneID20240230	338	38/01/15	7.01	Cytoplasm
	Hypothetical protein	GeneID20246040	357	40843 33	6.65	Cytoplasm
	Hypothetical protein	GeneID20240724	300	40843.33	0.05	Cytoplasm
	Hypothetical protein	GeneID20249736	302	34804 35	8.26	Cytoplasm
		Loc110440550	204	25107.70	0.20	Cytoplashi
	Cyclin-dependent kinase I like	LOC110448550	304	35107.79	8.58	Cytoplasm
	Cyclin-dependent kinase 2 like	LOC110446820	209	23567.31	8.88	Cytoplasm
	Cyclin-dependent-like kinase 5	LOC110443310	306	35121.21	6.72	Cytoplasm
	Cyclin-dependent kinase 6 like	LOC110452126	334	37547.70	5.25	Cytoplasm
	Cyclin-dependent kinase / like	LOC110443310	340	38/86.85	/.16	Cytoplasm
	Cyclin-dependent kinase 8 like	LOC110456883	462	53195.86	8.8/	Cytoplasm
Mizuhopecten yessoensis	Cyclin-dependent kinase 9 like	LOC110455838	396	45303.21	9.19	Cytoplasm
	Cyclin-dependent kinase 9 like	LOC110441367	406	46812.90	9.22	Cytoplasm
	Cyclin-dependent kinase 10 like	LOC110443388	381	43332.29	8.42	Cytoplasm
	Cyclin-dependent kindse IIB like	LOC110458839	/86	91502.18	5.28	Nucleus
	Cyclin-dependent kindse 12 like	LOC110465128	1509	168036.26	9.43	Nucleus
	Cyclin-dependent kinase 14 like	LOC110460375	388	43443.78	6.90	Cytoplasm
	Cyclin-dependent kindse 17 like	LOC110448834	462	52254.92	8.03	Nucleus
	Cyclin-dependent kinase 20 like	LOC110458038	343	38809.74	6.13	Cytoplasm
	Cyclin-dependent kinase 1 like	LOC106880228	304	35059.48	7.09	Cytoplasm
	Cyclin-dependent kinase 2 like	LOC106876684	277	31959.04	6.76	Cytoplasm
	Cyclin-dependent-like kinase 5	LOC106880362	296	33712.73	7.59	Cytoplasm
	Cyclin-dependent kinase 6 like	LOC106881146	281	32143.16	7.63	Cytoplasm
	Cyclin-dependent kinase 7 like	LOC106883163	284	32319.45	6.01	Cytoplasm
	Cyclin-dependent kinase 8 like	LOC106878348	461	52741.77	9.05	Cytoplasm
Octopus bimaculoides	Cyclin-dependent kinase 9 like	LOC106871831	366	42452.25	9.17	Cytoplasm
	Cyclin-dependent kinase 10 like	LOC106884424	378	43703.84	8.87	Cytoplasm
	Cyclin-dependent kinase 11B like	LOC106872191	819	95046.49	6.18	Nucleus
	Cyclin-dependent kinase 12 like	LOC106872449	1538	172264.59	9.43	Nucleus
	Cyclin-dependent kinase 14 like	LOC106877593	511	57441.61	8.73	Nucleus
	Cyclin-dependent kinase 17 like	LOC106879770	485	55107.16	8.54	Nucleus
	Cyclin-dependent kinase 20 like	LOC106883147	277	31332.10	7.66	Cytoplasm
	Cyclin-dependent kinase 1 like	LOC112558173	302	34856.67	8.90	Cytoplasm
	Cyclin-dependent kinase 2 like	LOC112556656	299	34252.60	8.34	Cytoplasm
Pomacea canaliculata	Cyclin-dependent-like kinase 5	LOC112564382	296	34090.17	6.46	Cytoplasm
	Cyclin-dependent kinase 6 like	LOC112556232	352	40137.83	6.35	Cytoplasm
	Cyclin-dependent kinase 7 like	LOC112553685	347	39426.77	9.08	Cytoplasm
	Cvclin-dependent kinase 8 like	LOC112566334	461	53007.09	9.34	Cytoplasm

(to be continued)

continued)						
Species	Gene name	Gene ID	aa	MV(Da)	pI	SL
	Cyclin-dependent kinase 9 like	LOC112574862	374	43554.36	9.09	Cytoplasm
	Cyclin-dependent kinase 9 like	LOC112575238	365	42398.45	9.17	Cytoplasm
	Cyclin-dependent kinase 10 like	LOC112576905	385	44234.19	9.07	Cytoplasm
Demension	Cyclin-dependent kinase 11B like	LOC112556334	876	102025.48	6.15	Endomembrane system
Pomacea canaliculata	Cyclin-dependent kinase 12 like	LOC112563814	1366	151859.73	9.37	Nucleus
	Cyclin-dependent kinase 14 like	LOC112569616	518	58116.28	9.22	Nucleus
	Cyclin-dependent kinase 17 like	LOC112571428	474	53459.24	8.76	Nucleus
	Cyclin-dependent kinase 20 like	LOC112571983	348	39541.86	6.79	Cytoplasm

Table 3 The bioinformation of the Cyclin family genes in seven mollusc species

Species	Gene name	Gene ID	aa	MV(Da)	pI	SL
	Cyclin A like	LOC101862222	438	48632.88	5.98	Organelle membrane
	Cyclin B2 like	LOC106012287	160	18075.21	6.07	Nucleus
	Cyclin B3 like	LOC101852415	442	49746.35	6.25	Organelle membrane
	Cyclin B like	LOC101850386	442	49577.98	7.67	Plasma membrane
	Cyclin C like	LOC101860286	293	34150.51	6.53	Endomembrane system
	Cyclin D2 like	LOC101847634	307	34944.62	5.64	Endomembrane system
	Cyclin E1 like	LOC101845141	444	50530.48	5.72	Nucleus
Aplysia californica	Cyclin F like	LOC101850094	1162	128227.24	6.23	Endomembrane system
	Cyclin H like	LOC101847105	344	39935.15	8.59	Organelle membrane
	Cyclin I like	LOC101848393	290	32757.42	6.45	Plasma membrane
	Cyclin I like	LOC101847777	347	39070.38	7.99	Endomembrane system
	Cyclin K like	LOC101863951	593	65646.9	8.75	Plasma membrane
	Cyclin L1 like	LOC101855525	535	61983.32	9.99	Organelle membrane
	Cyclin Y like	LOC101863542	372	42968.88	6.98	Nucleus
	FAM58A like	LOC101847523	235	27387.89	8.42	Endomembrane system
	Cvclin A like	LOC106061643	435	49344.56	6.17	Endomembrane system
	Cyclin B3 like	LOC106057744	442	50240.11	8.18	Plasma membrane
	Cyclin B like	LOC106074749	432	48862.72	8.73	Organelle membrane
	Cvclin B like	LOC106071160	450	51562.36	8.05	Endomembrane system
	Cvclin B like	LOC106062617	307	35406.07	5.31	Endomembrane system
	Cvclin C like	LOC106071702	290	33539.92	6.32	Organelle membrane
Biomphalaria glabrata	Cvclin D2 like	LOC106059492	302	34278.59	5.30	Plasma membrane
	Cvclin E like	LOC106065422	278	31527.09	5.09	Endomembrane system
	Cvclin F like	LOC106067840	1132	125691.36	8.35	Plasma membrane
	Cyclin H like	LOC106054066	326	38195.82	6.63	Organelle membrane
	Cyclin I like	LOC106075664	338	38546.8	6.63	Endomembrane system
	Cyclin L1 like	LOC106078715	516	60730.04	9.97	Organelle membrane
	Cyclin Y like	LOC106056699	358	41199.55	5.48	Nucleus
	Cyclin A	LOC105348733	476	53201.43	5.40	Plasma membrane
	Cyclin B	LOC105329592	496	56623.04	9.08	Organelle membrane
	Cyclin B	LOC105317174	432	49017.76	7.16	Organelle membrane
	Cyclin B3	LOC105347974	459	51961.69	8.24	Organelle membrane
	Cyclin C	LOC105328264	283	33192.49	6.00	Organelle membrane
	Cyclin D2	LOC105330764	291	33344.44	5.14	Endomembrane system
	Cyclin E	LOC105332299	481	55701.39	5.32	Mitochondrion
	Cyclin F	LOC105347344	757	85072.35	5.52	Endomembrane system
	Cyclin G1	LOC105343927	350	39638.57	6.01	Endomembrane system
Crassostrea gigas	Cyclin H like	LOC105333009	283	33095.58	8.12	Endomembrane system
	Cyclin I	LOC105343928	326	36977.11	8.04	Nucleus
	Cyclin J	LOC105319735	308	35644.15	6.07	Plasma membrane
	Cyclin K	LOC105343893	579	64506.39	8.89	Cytoplasm
	Cyclin L1	LOC105343487	465	54069.95	10.16	Organelle membrane
	Cyclin O	LOC105335536	371	42229.66	4.67	Plasma membrane
	Cyclin S13-7 like	LOC105326680	392	44702.16	8.32	Organelle membrane
	Cyclin T2	LOC105330254	791	88394.16	9.19	Plasma membrane
	Cyclin Y like	LOC105323010	353	40471.73	6.17	Nucleus
	FAM58A like	LOC105347660	228	26662.03	6.34	Endomembrane system
	Hypothetical protein	Gene ID 20234850	252	29161.5	8.56	Nucleus
Lottia gigantaa	Hypothetical protein	Gene ID20231625	258	29927.73	8.28	Endomembrane system
Louiu gigunieu	Hypothetical protein	Gene ID 20250518	240	28025.58	6.41	Endomembrane system
	Hypothetical protein	Gene ID20251317	190	22095.74	5.99	Endomembrane system

(to be continued)

(continued)

Species	Gene name	Gene ID	aa	MV(Da)	pI	SL
	Hypothetical protein	Gene ID 20246422	268	30977.27	6.39	Endomembrane system
	Hypothetical protein	Gene ID20246595	327	37778.55	8.30	Endomembrane system
	Hypothetical protein	Gene ID20231798	259	30480.69	6.03	Plasma membrane
	Hypothetical protein	GeneID20244950	283	32262.58	7.68	Nucleus
	Hypothetical protein	Gene ID20240526	246	28417.69	8.23	Organelle membrane
	Hypothetical protein	Gene ID 20251369	119	13482.71	7.11	Endomembrane system
ottia gigantea	Hypothetical protein	Gene ID20230294	597	67949.11	6.74	Endomembrane system
00	Hypothetical protein	Gene ID20245912	416	47791.65	5.57	Nucleus
	Hypothetical protein	Gene ID20244919	284	32306.59	5.20	Endomembrane system
	Hypothetical protein	Gene ID 20246312	293	340/1.35	8.03	Endomembrane system
	Hypothetical protein	Gene ID20247032	280	52927.50 12360 17	5.85 6.72	Organelle membrane
	Hypothetical protein	Gene ID20239855	246	2700/ 8/	5.68	Endomembrane system
	Hypothetical protein	Gene ID 20247260	416	47048 34	5 34	Plasma membrane
		L OC110457210	126	40210.24	6.72	
	Cyclin A like	LOC110457210 LOC110459617	426	48319.24	5.75	Endomembrane system
	Cyclin B2 like	LOC110439017	120	52247 17	4.70	Fudemembrane system
	Cyclin B5 like	LOC110441995	470	516/3/6	0.75 7.64	Organelle membrane
	Cyclin D like Cyclin C like	LOC110443037	207	24651 /3	6.21	Endomembrane system
	Cyclin D2 like	LOC110454764	293	33657.09	5.15	Plasma membrane
	Cyclin D2 like	LOC110444575	143	16823 79	4.78	Nucleus
	Cvclin E like	LOC110443792	438	49996.98	5.71	Nucleus
	Cvclin F like	LOC110461504	794	89574.03	6.31	Plasma membrane
lizuhopecten yessoensis	Cyclin G1 like	LOC110441487	370	42327.8	5.36	Endomembrane system
	Cyclin H like	LOC110451027	327	37828.79	8.57	Organelle membrane
	Cyclin I like	LOC110441488	336	38617.73	6.40	Nucleus
	Cyclin K like	LOC110446434	563	61970.42	9.06	Plasma membrane
	Cyclin L1 like	LOC110458915	472	55269.27	10.2	Organelle membrane
	Cyclin O like	LOC110455988	462	51200.11	4.56	Plasma membrane
	Cyclin T2 like	LOC110443050	821	91190.45	9.19	Plasma membrane
	Cyclin Y like	LOC110452085	354	40390.85	6.42	Nucleus
	FAM58A like	LOC110464947	232	27445.67	6.55	Endomembrane system
	Cyclin A3-1	LOC106867971	401	45996.09	7.47	Plasma membrane
	Cyclin A like	LOC106879537	457	52092.23	5.72	Organelle membrane
	Cyclin B3 like	LOC106882904	420	48814.73	7.94	Organelle membrane
	Cyclin B like	LOC106879992	384	43863.63	9.03	Organelle membrane
	Cyclin C like	LOC106867551	290	33916.23	6.45	Endomembrane system
	Cyclin D2 like	LOC106878898	286	32866.25	5.15	Endomembrane system
	Cyclin E like	LUC1068/4854	436	49255.18 87252.02	0.4/	INUCIEUS
Octopus bimaculoides	Cycun r uke Cyclin H like	LOC100883183 LOC106870470	780	0/333.83 36671 25	0./0	Fidomembrane system
	Cycun II like Cyclin I like	LOC106881550	278	38100 24	5.65 8.19	Endomembrane system
	Cyclin I like Cyclin K like	LOC106871018	520 674	74331 63	9.16	Plasma membrane
	Cyclin L1 like	LOC106882358	478	56177 31	10.07	Organelle membrane
	Cyclin O	LOC106872739	360	42281.57	7.93	Plasma membrane
	Cyclin T1 like	LOC106879624	604	66781.68	9.33	Plasma membrane
	Cyclin Y like	LOC106884459	370	42075.54	8.33	Nucleus
	FAM58A like	LOC106879276	230	27006.26	8.92	Endomembrane system
	Cyclin A like	LOC112560487	433	48959.77	5.17	Organelle membrane
	Cvclin B3 like	LOC112555046	332	38130	6.48	Endomembrane system
	Cyclin B like	LOC112555595	314	35548.19	5.29	Endomembrane system
	Cyclin B like	LOC112553650	461	51222.91	8.68	Organelle membrane
	Cyclin C like	LOC112554859	299	34726.07	6.34	Plasma membrane
	Cyclin D2 like	LOC112566123	297	33617.77	5.05	Endomembrane system
	Cyclin E2 like	LOC112577049	467	53680.42	5.92	Endomembrane system
Pomacea canaliculata	Cyclin F like	LOC112564092	763	84712.55	6.36	Plasma membrane
	Cyclin H like	LOC112557535	324	38457.24	6.07	Organelle membrane
	Cyclin I like	LOC112559393	328	37207.27	6.64	Endomembrane system
	Cyclin K like	LOC112570940	570	62518.29	9.09	Plasma membrane
	Cyclin L1 like	LOC112556543	490	56800.93	10.21	Endomembrane system
	Cyclin Q like	LOC112572637	232	26812.06	6.86	Endomembrane system
	Cyclin T1 like	LOC112558079	826	92553.59	8.68	Endomembrane system
	Cvclin Y like	LOC112556592	375	43055 82	6.81	Cytoplasm

3.2 Phylogenetic Analysis and Classification of the CDK and Cyclin Genes

To analyze the characteristics of molluscan CDK and Cyclin proteins, and to examine the CDK and Cyclin genes in molluscs and other representative animals in evolutionary terms, phylogenetic tree was constructed using the CDK proteins from the seven molluscs, human, vase tunicate, fruit fly, starlet sea anemone, purple sea urchin and zebrafish. As shown in Fig.3, the CDK family was clustered into eight groups: CDK1 (including *CDK1*, *CDK2* and *CDK3*), CDK4/6 (including *CDK4* and *CDK6*), CDK5 (including *CDK5*, *CDK16*, *CDK17*, *CDK18* and *CDK14*), CDK7, CDK20, CDK8, CDK9 (including *CDK9*, *CDK12* and *CDK13*), and CDK10/11 (including *CDK10* and *CDK11*). Because Cyclin sequences diverged greatly, a reliable Cyclin phylogenetic tree failed to be obtained between molluscs and other animals like CDKs. We constructed ML trees from the seven organisms in Mollusca, human, purple sea urchin, part genes of vase tunicate and fruit fly (Fig.4). According to the phylogenetic tree, the Cyclin family in molluscs could be divided into 15 groups: Cyclin A, Cyclin B, Cyclin C, Cyclin D, Cyclin E, Cyclin F, Cyclin G/I, Cyclin H, Cyclin J, Cyclin K, Cyclin L, Cyclin O, Cyclin Q, Cyclin T and Cyclin Y (Fig.4). Cyclin B subfamily has the largest number of members (2 Cyclin B-like and a Cyclin B3) in Mollusca.

3.3 CDK and Cyclin Gene Structure and Conserved Motifs

To further interpret the structural diversity of CDK and Cyclin proteins, the gene structure and conserved motifs

Fig.3 Phylogenetic relationships of CDK genes in Mollusca and several representative metazoans, including human, vase tunicate, fruit fly, starlet sea anemone, purple sea urchin and zebrafish. The phylogenetic tree is constructed using the neighbor-joining (NJ) method with 1000 bootstrap. The bootstrap values are represented by various colors. The CDK genes of Mollusca are marked with blue and other organisms' CDK genes are with black. All proteins are labeled with species names followed by accession numbers.

Fig.4 Phylogenetic relationships of Cyclin genes in Mollusca and several representative metazoans, including human, purple sea urchin, part genes of vase tunicate and fruit fly. The phylogenetic tree is constructed using the maximum likelihood (ML) method with 1000 bootstrap. The bootstrap values are represented by various colors. The Cyclin genes of Mollusca are marked with blue and other organisms' Cyclin genes are with black. All proteins are labeled with species names followed by accession numbers.

were analyzed (Fig.5 and Fig.6). The structures of the CDK and Cyclin genes were found to be moderately conserved among the various subfamilies, and the number and location of exons were similar in each subfamily, indicating similar function. The highest intron disruption was noted in the members of the CDK11, with intron disruption from 19 to 20, except for L. gigantea with seven intron disruption. The lowest intron disruption was noted in the members of the CDK9, with intron disruption varying from six to nine. For Cyclin family, Cyclin F subfamily showed the highest intron disruption ranging between 14 and 17, except for L. gigantea with eight intron disruption; Cyclin D subfamily showed the lowest intron disruption ranging from four to eight. In general, these results indicate that the CDKs and Cyclins in each group possess a similar number of exons, which further supports the evolutionary classification. Alignments of all CDK9 proteins from the seven molluscs was shown in Fig.7. Multiple sequence alignment of CDK9 proteins revealed a highly conserved CDK domain.

As a consensus or a conserved region in the protein or nucleotide sequences, motifs were analyzed in this study (Fig.5 and Fig.6). Totally, 10 conserved motifs of molluscan CDKs and Cyclins were identified using MEME. The length of these motifs varied from 15 to 29 aa in CDK family, and ranged between 15 and 41 aa in Cyclin family. For Cyclin genes, motifs 1, 3 and 4 were identified as N-terminal domains of Cyclin, while motifs 5 and 9 were identified as C-terminal domains of Cyclin. As CDK family, motifs 1, 2, 3, 6 and 7 were identified as protein kinase domains. Motif 2 (QLLRGJAYCHSNRILHRDLKPQNJLI) and motif 5 (DQLDRIFKVLGTPTEETWPGV) were common in all the seven genomes, except CDK16 in *A. cali*- *fornica*. Taken together, the finding of similar gene structures and conserved motifs within the same subfamily further supports the accuracy of the phylogenetic tree. On the other hand, the structural differences between different subfamilies also indicate functional diversity of the CDK and Cyclin genes in Mollusca.

4 Discussion

Cell cycle is controlled by the regulatory units, cyclins, with the catalytic units, cyclin-dependent kinases. With the evolution of eukaryotes, the number of CDKs and Cyclins increased (Gunbin *et al.*, 2011; Cao *et al.*, 2014). For example, *Saccharomyces cerevisiae* contains 6 CDKs and 15 Cyclins, whereas in human, the gene number is up to 20 (CDKs) and 29 (Cyclins) (Malumbres and Barbacid, 2005; Malumbres, 2014). However, investigation of cycle regulation in eukaryotes is limited, especially in Mollusca. Our work represents the first genome-wide identification of CDK and Cyclin family members in molluscs and provides insights into molecular evolution. In our study, we identified 95 genes in CDK family and 114 genes in Cyclin family from the seven molluscs. The number of CDK genes ranged from 13 to 15, and the Cyclin genes' number varied from 13 to 21,

Fig.5 Phylogenetic relationships, gene structure and architecture of conserved protein motifs in CDK genes from seven mollusc species. (A) The phylogenetic tree is constructed based on the conserved structure of seven mollusc species CDK proteins using MEGA 7.0 software. (B) Exons and introns of CDK genes. Blue boxes indicate untranslated regions; red boxes indicate exons; and black lines indicate introns. (C) The motif composition of CDK proteins. The motifs are displayed in boxes with different colors. The length of the protein can be estimated using the scale at the bottom.

Fig.6 Phylogenetic relationships, gene structure and architecture of conserved protein motifs in Cyclin genes from seven mollusc species. (A) The phylogenetic tree is constructed based on the conserved structure of Cyclin proteins from seven mollusca species using MEGA 7.0 software. (B) Exon and intron of Cyclin genes. Blue boxes indicate untranslated regions; red boxes indicate exons; and black lines indicate introns. (C) The motif composition of Cyclin proteins. The motifs are displayed in boxes with different colors. The length of the protein can be estimated using the scale at the bottom.

Hsa-CDK9				1	TT	η1 200- 20	β1	η2 200 30	β2 4 0	β3
Hsa-CDK9 Spu-CDK9 Lgi-gi 6764282949 Lgi-gi 676424824 Mye-gi 1207944264 Mye-gi 120794264 Pca-gi 1397731209 Pca-gi 1397729764 Aca-gi 871276478 Bgl-gi 908442277 Cgi-gi 762098603 Obi-gi 961096844	MEQPSSLPQ MEQPSSLPQ MQHGHSTSS	ASFSGTSGP MQRGGGEGA IPVPSVPSA SSSQNISGA	GGYSGGAHP TTKRNNSPR GGGSSGYTG	MAKQ YKMAMAPYQ MAKI MTTQAKI TSGGHSSYR VANGSTSIK MSSQGPR MSSQGPR MSSQGPR TGLSSYSGK MNTK	YDSVECPFCD RESPEFKYCE YDDLKFPYCE YEDLEFPYCE YEDLEFPYCE YEDLNFQFIP YDDLFFFCE SEELQFPFCQ GEEGYYFFCP VEDMEFPYCP YDDLFYPCD	EVSKYE EVSKYE NASEKYE DSGKYE EESKYE EETKYE DATDKYE DANKYE DDNKYE	EKLAKIG EKULKIG EKULKIG EKLTKIG EKLAKIG EKLAKIG EKLAKIG EKLAKIG EKLAKIG	QGIFGEVF QGIFGEVF QGIFGEVF QGIFGEVF QGIFGEVF QGIFGEVF QGIFGEVF QGIFGEVF QGIFGEVF	KARHEK.T KAKHKK.N KARDRK.T KARDRK.T KARDRK.T KARDKK.T KARERASK KARDKK.T KARDKK.T	GOKVALKKVI KNIVALKKVI NKLVAMKKVI KRIVAMKKVI KRLVAMKKVI KKLVAMKKVI KNVVAMKVI RRLVAMKVI KKLVALKVI
Hsa-CDK9	TT	α1 0000000000	LOC TT	β4	9.0	β5	β6 → 2	α2 20000	2000	α3 1000000000000000000000000000000000000
H=a-CDK9 Spu-CDK9 Lgi-gi 676482949 Lgi-gi 676424824 Mye-gi 1207944264 Mye-gi 1207981212 Pca-gi 1397731209 Pca-gi 1397731209 Pca-gi 871276478 Bgl-gi 908442277 Cgi-gi 762098603 Obi-gi 961096844	MENEKEGFP MENEKEGFP MENEKEGFP MENEKEGFP MENEKEGFP LDNEKEGFP LDNEKEGFP MENEKEGFP MENEKEGFP MENEKEGFP	TALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI DITALREIRI	LOLLRHENVV LOLLRHENVV LOLLRHENVV LOLLRHENVV LOLLRHENVV LOLLRHENVV LOLLRHENVV LOLLRHENV LOVLKNDNI LOVLKNDNI LOVLKNDNI LOVLKNDNI		KASPYNRCKG KATAYNRYKG TASPYNRYKS KASQYNRFKS KASQYNRFKS RATPYNRWKS RAGPYNRYKS KAPYNRYKS RATAYNRMKS RATAYNRMKS KATSYNRMKS	SIYLVFE SIYLVFE TFYLVFE TFYLFE TFYLFE TFYLVFE TYLVFE TVYLVFE TYLVFE TYLLFE TYLFE	FCEHDL FCEHDL FCEHDL FCEHDL FCEHDL FCEHDL FCEHDL FCEHDL FCEHDL FCEHDL	AGLLSNY AGLLSNAN AGLLSNAN AGLLSNAN AGLLSNAN AGLLSNAN AGLLSNY AGLLSNY AGLLSNPQ AGLLSNPQ AGLLSNYQ	VKFTLGEI VKFSLGEI VKFKLAEI VKFKLGEI VKFSLGEI VKFSLGEI VKFSLAEI VKFSLAEI VKFSLAEI VKFSLAEI	REVNOMLING KSVIKQLING REVNSQLING REVNQQLING REVNQQLING KKVMQQLING REVNQQLING REVNQQLING REVNQQLING REVNQQLING REVNQQLING REVNQQLING
Hsa-CDK9	οοοοοο -	π π η3 δ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	β8 тт -	β9 β1	10		η4 <u>000</u>	α4 <u>0000</u>	000	α5 100000000000
Hsa-CDK9 Spu-CDK9 Lgi-gi 67642824 Mye-gi 1207944264 Mye-gi 1207944264 Mye-gi 1207941212 Pca-gi 1397731209 Pca-gi 1397729764 Aca-gi 871276478 Bgl-gi 908442277 Cgi-gi 762098603 Obi-gi 961096844	LYYIHRNKI LYYIHSNKI LYFIHSNKI LYFIHSNKI LYFIHSNKI LYFIHSNKI LYFIHSNKI LYYIHSNKI LYYIHSNKI LYFIHSNKI LYFIHSNKI	LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN LHRDMKAAN	VLITKA GVL LITKA GVL	KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR KLADFGLAR	AFSLAKNSQP AFSLPKGDAP AFSLPKGDAP AFSHPKHGQA AFSVQKAGQP AWSKPQRSAQ AFSCKGMP VYSQKDR AFSDKLN AFSDKLN AFSDKLN AFSTAGKDKQ AFSLKGQP	NRYTNRV NRYTNRV OKYTNRV NKYTNRV NRYTNRV NRYTNRV RYTNRV RYTNRV NRYTNRV NRYTNRV	VVTLWYR VVTLWYR VVTLWYR VVTLWYR VVTLWYR VVTLWYR VVTLWYR VVTLWYR VVTLWYR	PELLICE PPELLCE PPELLCE	RDYGPPIC RNYGPAID RNYGPAID RNYGPAID RNYGPID RNYGPAID RNYGPAID RNYGPAID RNYGPPID RNYGPPID RNYGPPID RNYGPPID	IWGAGCIMAE WWGAGCIMAE WWGAGCIMAE WWGGCIMAE WWGGCIMAE UWGAGCIMAE IWGGGCIMAE IWGGCIMAE IWGGCIMAE IWGAGCIMAE
Han-CDV0		αe			α7		α8		α9	
Hsa-CDK9 Hsa-CDK9 Lgi-gi 676482949 Lgi-gi 676482949 Lgi-gi 12079424264 Mye-gi 1207981212 Pca-gi 1397731209 Pca-gi 1397731209 Pca-gi 871276478 Bgl-gi 908442277 Cgi-gi 762098603 Obi-gi 961096844	MWTRSPIMC MWTRSPIMC MWTRSPIMC MWTRSPIMC LWTRTPIMC MWTRSPIMC MWTRSPIMC MWTRSPIMC MWTRSPIMC		2 1 SCLCGST 1 SHLCGST 1 SHLCGST 1 SHLCGST 1 SLCGST 1 SLCGST 1 SCLCGST 1 SCLCGST 1 SCLCGST 1 SCLCGST 1 SCLCGST	5 0 I P E VWP S A VWP S A VWP G V E K P D VWP G V E K P D VWP G V E I P D VWP G V E V E VWP G V E I K E VWP N V E I V E V E I V E V E V E V E V E V E V E V E	260 NYELYEKLEL KLELSNIEL KLDLYEKLEL KLDLYEKLEL KLDLYGKLEV KYDLFIQMEL NIELYGKVEL KLDLFIKIEL KLDLFIKIEL KLDLFIKIEL	2 7 0 V K G K K K K P G G K K K P G G K K K P K G D K K K P K G D K K K P K G C K K K K K P K G C K K K K K K K K K K K K K K K K K	VKDRLK VKERLE VKERLE VKERLK VKERLK VKERLK VRDRLM VRERLH VKERLH VKERLH VKERLH	2 A[VVRDP YA SYVKDQ YA A[VVKDK PA P[VRDQ YA A[VVKDQ YA A[VKDQ YA H]VIKDQ YA G[VVKDQ YA Q[VVKDQ YA V]VKDQ YA	LDI IDKLI LDI IDKLI LDI LDKLI LDI LDKLI LDI LDKLI LDI LDKLI LDI LDKLI LDI LDKLI LDI LDKLI LDI LDKLI LDI LDKLI	VLDPAQRIDS NIDPKRMDA TLNPAKRLDS VLDPSKRIDS VLDPSKRIDS VLDPSKRYDA TLDPKRDS SLNPSNRIDS TLDPSKRVNS YLDPSKRVNS YLDPSKRVNS
Hsa-CDK9	α10 η5 2020 200	320	330	340	350			360	370	
Haa-CDK9 Spu-CDK9 Lgi-gi 676482949 Lgi-gi 676424824 Mye-gi 1207944264 Mye-gi 1207941212 Pca-gi 139771209 Pca-gi 1397729764 Aca-gi 871276478 Bg1-gi 908442277 Cgi-gi 762098603 Obi-gi 961096844	D DALNHDFF D LALNHDFF D LALNHDFF D LALNHDFF D SALNHDFF D SALNHDFF D TALNHDFF D DALNHDFF D DALNHDFF D DALNHDFF D TALNHDFF D TALNHDFF		TOTOLITO	SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEYLAPP SMFEFLAPP SMFEFLAPP	RRKGSQITQQ RRKGSQITQQ RRRQHPAAAA RRRGHIP RRPGQRP RRGVQQG RRRVPH RRGQWTN RRRQWTN RRR RRGQ RRR RR RRF RR RRF RR RRF RR RRG RR RR G R RRG R R R R R R R R R	STNQS AANHRNE HRE I .VPIHQQ .APINQE	PHHANPP HAQNQN HAQNQN PNPNQAN PHQQ QQQRQQ QQQRQQ PQAPGV . IPAGP . QHHV	.RNPATTN NRPSTAAP PPKPAPNN QQQARPPT IQRPTHNP MHRPVHNN PPKQPPN QHSHMPPD VRPTGHNP VRPTGHNP VRPTGHNP QASPTONP	QTEFERVF QNFDRVF DHHFERIF DQHFERVF DQHFERVF DQHFERIF GQHFERIF DQHFERIF DQHFERIF DQHFERVF DQHFERVF DQHFERVF	

Fig.7 Sequence alignment of the *CDK9* genes from seven mollusc species, *H. sapiens* (*Has-CDK9*), and *S. purpuratus* (*Spu-CDK9*). Red shading denotes the extent of sequence conservation.

which is consistent with evolution trend of CDK and Cyclin in premetazoan lineages. Additionally, number and composition of the CDK genes were more stable than genes of the Cyclin families in the seven mollusc species, suggesting that CDK family was more conserved than Cyclin family and members of the Cyclin family might function in a species-specific manner.

4.1 The Features of CDK Family in Molluscs

Based on our results, CDK genes in the seven molluscs are significantly conserved. The number of CDK family

members are steady, ranging from 13 to 15, and can be divided into eight subfamilies, which is consistent with previous reports (Liu and Kipreos, 2000; Guo and Stiller, 2004). The eight subfamilies can be classified into three cell-cycle-related subfamilies (CDK1/2, CDK4/6 and CDK5) and five transcriptional subfamilies (CDK7, CDK8, CDK9, CDK10/11 and CDK20) according to their functional characteristics (Liu and Kipreos, 2000; Cao *et al.*, 2014). Cell-cycle-related subfamilies of CDK binding with Cyclin A, Cyclin B, Cyclin D and Cyclin E promote each phase of the cell cycle. The different functions and structures of these CDK

subfamilies have been described in an excellent review (Wood and Endicott, 2018).

According to the phylogenetic tree, CDK5 subfamily is the most multiple subfamily with three clades including CDK5, CDK16/17/18, and CDK14/15. CDK5 subfamily in metazoan differs greatly (Mikolcevic et al., 2012), but in the seven species of mollusc, it is more conservative based on gene constitution, phylogenetic and motif analyses. CDK14 and CDK15 were both detected in vertebrates (Mikolcevic et al., 2012), but in the seven mollusc species, only CDK14 was identified. CDK16/17/18 is also named as PCTAIRE 1/2/3 (PCTK1/2/3), which contains a PCTAIRE sequence in the C-helix characterized by a conserved catalytic domain. In mammals, CDK16, CDK17 and CDK18 are expressed in neurons, suggesting that they play an essential role in the nervous system (Hirose et al., 1997; Herskovits and Davies, 2006; Shimizu et al., 2014). At present, PCTAIRE is studied as a new potential cancer treatment target (Dixon-Clarke et al., 2017; Wang et al., 2018). In this study, only one gene of CDK16/17/18 group, CDK17, was found in six mollusc species, while two genes, CDK16 and CDK18, were found in A. californica. A. californica has large neurons and is suited for neurobiology study, CDK16 and CDK18 might play important roles. CDK17 was highly conserved among the vertebrates, and most eumetazoa contain only CDK17 (Mikolcevic et al., 2012). So, it is suggested that CDK17 might originate earlier than CDK16/18. Our results seem to provide additional evidence to support this scenario.

Except for CDK9, the other seven subfamilies of CDK genes have only one duplication in the seven mollusc species. The gene structure and motif analyses of the seven CDK subfamilies failed to find big differences in the exon number, multiple copies and homologous genes, which further highlighted that the seven types of CDK appeared to be widely conserved among different mollusc species. The CDK9 subfamily consists of two clades, CDK9 and CDK12/ 13 (Liu and Kipreos, 2000). It was referred that the CDK9 subfamily split into two clades before the divergence of metazoans and fungi (Cao et al., 2014). In our results, all the seven molluscs contain CDK9 and CDK12/13. For CDK12/ 13, they are all CTD kinases with similar function (Kondrashov, 2012; Zhang et al., 2016). In this study, they were not detected in the same species, which indicates there are substitutions between them. Notably, for CDK9 genes, there are two duplications in P. canaliculate, L. gigantea and M. yessoensis. So far, it is the first time to identify the duplications of CDK9 genes in animal genomes. According to the result of phylogenetic analysis, the two duplications do not cluster tightly, but clustered with other species' CDK9. For example, L. gigantea clustering respectively with D. melanogaster and P. canaliculate (Fig.3). Gene duplication has been the main course of expansion of the various gene families, and is associated with the adaptation of animals to the changing environments (Kondrashov, 2012). As a subunit of the positive transcription elongation factor b complex, CDK9 regulates transcription elongation in cooperation with Cyclin T. It also forms a complex with Cyclin K to regulate DNA damage signaling in replicating cells and

recover from a transient replication arrest (Yu *et al.*, 2010). CDK9 is a multifunctional kinase involved in a broad range of physiological processes, including myogenesis, cell growth, cellular viability and apoptosis (De Falco and Giordano, 1998; Franco *et al.*, 2018). Actually, no study on CDK9 genes has been reported in molluscs by now, and our understanding of the CDK9 functions is limited. The results in our study suggested that *P. canaliculate*, *L. gigantea* and *M. yessoensis* might be good materials to explore the CDK9 functions and evolution.

4.2 The Features of Cyclin Family in Molluscs

114 Cyclin family genes identified in this study can be divided into three major groups (Group I, Group II, and Group III), which is consistent with the previous study (Ma et al., 2013). According to our results, Group I includes Cyclins A, B, D, E, F, G, I, J and O, Group II includes Cyclin Y, and Group III includes Cyclins C, H, L, K, T, and Q (Fam58). All types of Cyclin genes discovered in metazoon were also detected in the seven mollusc species. Cyclin A, B, D and E cooperated with CDK1 and CDK4/6 regulate cell cycle directly (Malumbres, 2014). It should be noted that Cyclin B in the seven mollusc species is the biggest subfamily with the average of three genes in each species, containing two Cyclin B-like genes and Cyclin B3 gene. They are divided into three clades respectively. It is well known that Cyclin B in partner with CDK1 drive G2-M transition in mitosis. Cyclin B is multiple in different species, for example, there are three Cyclin B genes in human, mouse and zebrafish; two in purple sea urchin, cattle and dog; one in Rhesus monkey, zebra finch and Florida lancelet (Gunbin et al., 2011; Cao et al., 2014). Cyclin B in invertebrates evolved both rapidly and at uneven rates (Gunbin et al., 2011). In most animals, two conserved B-type cyclins are detected: Cyclin B-like protein and Cyclin B3 (Nieduszynski et al., 2002). Cyclin B3 is more important for regulation of meiosis than mitosis and is relatively conserved in vertebrate and invertebrate (Nguyen et al., 2002; van der Voet et al., 2009; Miles et al., 2010). For Cyclin B-like protein, some organisms like human have two genes including Cyclin B1 and Cyclin B2, which can compensate each other in function (Chotiner et al., 2019). In our study, two Cyclin B-like genes were detected. Based on the phylogenetic analysis, the two Cyclin B-like genes clustered into two distinct clades, one of which clustered together with Cyclin B1 and Cyclin B2 of human, suggesting that this Cyclin Blike protein has a high homology with Cyclin B1 and Cyclin B2 in human, while the other one may carry out specific functions in molluses. Mollusea is the second largest group with more than 100000 species, which is widely distributed in lakes, marshes, oceans, mountains and other environments, so as to adapt to different habitats, the morphological structure and lifestyle of various groups are very different. A different Cyclin B-like gene perhaps is a distinct developmental strategy in the adaptation to their changeable living environment (Nieduszynski et al., 2002; Gunbin et al., 2011).

Except for the cell-cycle-regulate genes (Cyclin A, Cy-

clin B, Cyclin D and Cyclin E), Cyclin C, Cyclin F, Cyclin L and Cyclin Y in the seven mollusc species are relatively conserved without genes duplication and with similar gene structure and motif. There is little difference of Cyclin family composition between classes, except for L. gigantea. Compared with other gastropods, the Cyclin family of L. gigantea is more similar to bivalves, especially C. gigas. This may be because both C. gigas and L. gigantea live in the intertidal zone and face a complex and varied environment. Additionally, a recent research suggested Cyclin F should not be part of the Cyclin family as it has no characteristic Lys Glu pair (Quandt et al., 2020). In this study, we still analyzed Cyclin F as it consists of two typical cyclin domains, Cyclin N and Cyclin C. In addition, Cyclin K and Cyclin Q were not discovered in B. glabrata. However, according to recent studies, Cyclin K and Cyclin Q are conserved in metazoan species and are specific to animals (Ma et al., 2013; Cao et al., 2014). We found partial sequence of Cyclin Q in B. glabrata genome. The lack of whole Cy-

Acknowledgements

This study was supported by the grants from the National Natural Science Foundation of China (No. 316726 49), and the National Key R&D Program of China (No. 2018YFD0900200).

clin Q and Cyclin K genes was possibly because of genome

incompleteness (N50: 7298 bp; L50: 32153 bp).

References

- Abele, D., Brey, T., and Philipp, E., 2009. Bivalve models of aging and the determination of molluscan lifespans. *Experimental Gerontology*, **44** (5): 307-315, DOI: 10.1016/j.exger.2009.02.012.
- Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., *et al.*, 2015. The octopus genome and the evolution of cephalopod neural and morphological novelties. *Nature*, **524** (7564): 220-224, DOI: 10.1038/nature14668.
- Beach, D., Durkacz, B., and Nurse, P., 1982. Functionally homologous cell cycle control genes in budding and fission yeast. *Nature*, **300** (5894): 706-709, DOI: 10.1038/300706a0.
- Bodnar, A., 2009. Marine invertebrates as models for aging research. *Experimental Gerontology*, **44** (8): 477-484, DOI: 10. 1016/j.exger.2009.05.001.
- Boxem, M., 2006. Cyclin-dependent kinases in *C. elegans. Cell Division*, **1**: 1-12, DOI: 10.1186/1747-1028-1-6.
- Cao, L., Chen, F., Yang, X., Xu, W., Xie, J., and Yu, L., 2014. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. *BMC Evolutionary Biology*, **14** (1): 1-16, DOI: 10. 1186/1471-2148-14-10.
- Chotiner, J. Y., Wolgemuth, D. J., and Wang, P. J., 2019. Functions of cyclins and CDKs in mammalian gametogenesis. *Biology of Reproduction*, **101** (3): 591-601, DOI: 10.1093/biolre/ioz070.
- De Falco, G., and Giordano, A., 1998. CDK9 (PITALRE): A multifunctional cdc2-related kinase. *Journal of Cellular Physiology*, **177** (4): 501-506, DOI: 10.1002/(SICI)1097-4652(199812) 177:4<501::AID-JCP1>3.0.CO;2-4.
- Dixon-Clarke, S. E., Shehata, S. N., Krojer, T., Sharpe, T. D., von Delft, F., Sakamoto, K., *et al.*, 2017. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. *Biochemical Journal*, **474**: 699-713, DOI: 10.1042/BCJ20160941.

- Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., and Hunt, T., 1983. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. *Cell*, 33 (2): 389-396, DOI: 10.1016/0092-8674(83)90420-8.
- Franco, L. C., Morales, F., Boffo, S., and Giordano, A., 2018. CDK9: A key player in cancer and other diseases. *Journal of Cellular Biochemistry*, **119** (2): 1273-1284, DOI: 10.1002/jcb.26293.
- Gunbin, K. V., Suslov, V. V., Turnaev, I. I., Afonnikov, D. A., and Kolchanov, N. A., 2011. Molecular evolution of cyclin proteins in animals and fungi. *BMC Evolutionary Biology*, **11** (1): 224, DOI: 10.1186/1471-2148-11-224.
- Guo, Z., and Stiller, J. W., 2004. Comparative genomics of cyclindependent kinases suggest co-evolution of the RNAP II Cterminal domain and CTD-directed CDKs. *BMC Genomics*, 5 (1): 69, DOI: 10.1186/1471-2164-5-69.
- Herskovits, A., and Davies, P., 2006. The regulation of tau phosphorylation by PCTAIRE 3: Implications for the pathogenesis of Alzheimer's disease. *Neurobiology of Disease*, **23** (2): 398-408, DOI: 10.1016/j.nbd.2006.04.004.
- Hirose, T., Tamaru, T., Okumura, N., Nagai, K., and Okada, M., 1997. PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. *European Journal of Biochemistry*, **249** (2): 481-488, DOI: 10. 1111/j.1432-1033.1997.t01-1-00481.x.
- Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., and Gao, G., 2015. GSDS 2.0: An upgraded gene feature visualization server. *Bio-informatics*, **31** (8): 1296-1297, DOI: 10.1093/bioinformatics/ btu817.
- Hydbring, P., Malumbres, M., and Sicinski, P., 2016. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. *Nature Reviews Molecular Cell Biology*, **17** (5): 280-292, DOI: 10.1038/nrm.2016.27.Epub2016Apr1.
- Johnson, D., and Walker, C., 1999. Cyclins and cell cycle checkpoints. *Annual Review of Pharmacology and Toxicology*, **39** (1): 295-312, DOI: 10.1146/annurev.pharmtox.39.1.295.
- Katoh, K., and Standley, D. M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular Biology and Evolution*, **30** (4): 772-780, DOI: 10.1093/molbev/mst010.
- Kondrashov, F. A., 2012. Gene duplication as a mechanism of genomic adaptation to a changing environment. *Proceedings* of the Royal Society B: Biological Sciences, 279 (1749): 5048-5057, DOI: 10.1098/rspb.2012.1108.
- La, H., Li, J., Ji, Z., Cheng, Y., Li, X., Jiang, S., et al., 2006. Genome-wide analysis of cyclin family in rice (*Oryza sativa* L.). *Molecular Genetics and Genomics*, **275** (4): 374-386, DOI: 10. 1007/s00438-005-0093-5.
- Liu, J., and Kipreos, E. T., 2000. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): Differential conservation of CAKs in yeast and metazoa. *Molecular Biology and Evolution*, **17** (7): 1061-1074, DOI: 10.1093/oxfordjournals.molbev.a026387.
- Ma, Z., Wu, Y., Jin, J., Yan, J., Kuang, S., Zhou, M., et al., 2013. Phylogenetic analysis reveals the evolution and diversification of cyclins in eukaryotes. *Molecular Phylogenetics and Evolution*, 66 (3): 1002-1010, DOI: 10.1016/j.ympev.2012.12.007.
- Malumbres, M., 2011. Physiological relevance of cell cycle kinases. *Physiological Reviews*, **91** (3): 973-1007, DOI: 10.1152/ physrev.00025.2010.
- Malumbres, M., 2014. Cyclin-dependent kinases. *Genome Biology*, **15** (6): 1-10, DOI: 10.1186/gb4184.
- Malumbres, M., and Barbacid, M., 2005. Mammalian cyclin-dependent kinases. *Trends in Biochemical Sciences*, **30** (11): 630-641, DOI: 10.1016/j.tibs.2005.09.005.

- Mikolcevic, P., Rainer, J., and Geley, S., 2012. Orphan kinases turn eccentric: A new class of cyclin Y-activated, membranetargeted CDKs. *Cell Cycle*, **11** (20): 3758-3768, DOI: 10.4161/ cc.21592.
- Miles, D. C., van den Bergen, J. A., Sinclair, A. H., and Western, P. S., 2010. Regulation of the female mouse germ cell cycle during entry into meiosis. *Cell Cycle*, 9 (2): 408-418, DOI: 10.4161/ cc.9.2.10691.
- Morgan, D. O., 1997. Cyclin-dependent kinases: Engines, clocks, and microprocessors. *Annual Review of Cell and Developmental Biology*, **13** (1): 261-291, DOI: 10.1146/annurev.cellbio.13. 1.261.
- Murray, A. W., 2004. Recycling the cell cycle: Cyclins revisited. *Cell*, **116** (2): 221-234, DOI: 10.1016/s0092-8674(03)01080-8.
- Nguyen, T. B., Manova, K., Capodieci, P., Lindon, C., Bottega, S., Wang, X. Y., *et al.*, 2002. Characterization and expression of mammalian cyclin B3, a prepachytene meiotic cyclin. *Journal* of Biological Chemistry, **277** (44): 41960-4169, DOI: 10.1074/ jbc.M203951200.
- Nieduszynski, C. A., Murray, J., and Carrington, M., 2002. Wholegenome analysis of animal A- and B-type cyclins. *Genome Biology*, **3** (12): research0070.1-0070.8, DOI: 10.1186/gb-2002-3-12-research0070.
- Pines, J., 1995. Cyclins and cyclin-dependent kinases: A biochemical view. *Biochemical Journal*, **308**: 697-711, DOI: 10.1042/ bj3080697.
- Quandt, E., Ribeiro, M. P., and Clotet, J., 2020. Atypical cyclins: The extended family portrait. *Cellular and Molecular Life Sciences*, **77** (2): 231-242, DOI: 10.1007/s00018-019-03262-7.
- Shimizu, K., Uematsu, A., Imai, Y., and Sawasaki, T., 2014. Pctaire1/Cdk16 promotes skeletal myogenesis by inducing myoblast migration and fusion. *FEBS Letters*, **588** (17): 3030-3037, DOI: 10.1016/j.febslet.2014.05.060.
- Simakov, O., Marletaz, F., Cho, S. J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., *et al.*, 2013. Insights into bilaterian evolution from three spiralian genomes. *Nature*, **493** (7433): 526-531, DOI: 10.1038/nature11696.
- Stamatakis, A., 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, **30** (9): 1312-1313, DOI: 10.1093/bioinformatics/btu033.
- Strom, A., Francis, R. C., Mantua, N. J., Miles, E. L., and Peterson, D. L., 2004. North Pacific climate recorded in growth rings of geoduck clams: A new tool for paleoenvironmental recons-

truction. *Geophysical Research Letters*, **31** (6): L06206, DOI: 10.1029/2004GL019440.

- van der Voet, M., Lorson, M. A., Srinivasan, D. G., Bennett, K. L., and van den Heuvel, S., 2009. *C. elegans* mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. *Cell Cycle*, 8 (24): 4091-4102, DOI: 10.4161/cc. 8.24.10171.
- Wanamaker, A. D., Heinemeier, J., Scourse, J. D., Richardson, C. A., Butler, P. G., Eiriksson, J., *et al.*, 2008. Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for North Icelandic shelf waters. *Radiocarbon*, **50** (3): 399-412, DOI: 10.1017/S0033822200053510.
- Wang, G., Kong, H., Sun, Y., Zhang, X., Zhang, W., Altman, N., et al., 2004. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclinlike proteins. *Plant Physiology*, **135** (2): 1084-1099, DOI: 10. 1104/pp.104.040436.
- Wang, H. T., Liu, H. L., Min, S. P., Shen, Y. B., Li, W., Chen, Y. Q., et al., 2018. CDK16 overexpressed in non-small cell lung cancer and regulates cancer cell growth and apoptosis via a p27-dependent mechanism. *Biomedicine & Pharmacotherapy*, 103: 399-405, DOI: 10.1016/j.biopha.2018.04.080.
- Wang, S., Zhang, J., Jiao, W., Li, J., Xun, X., Sun, Y., *et al.*, 2017. Scallop genome provides insights into evolution of bilaterian karyotype and development. *Nature Ecology & Evolution*, 1 (5): 1-12, DOI: 10.1038/s41559-017-0120.
- Wood, D. J., and Endicott, J. A., 2018. Structural insights into the functional diversity of the CDK-cyclin family. *Open Biology*, 8 (9): 180112, DOI: 10.1098/rsob.180112.
- Yu, D. S., Zhao, R. X., Hsu, E. L., Cayer, J., Ye, F., Guo, Y., et al., 2010. Cyclin-dependent kinase 9-cyclin K functions in the replication stress response. *Embo Reports*, **11** (11): 876-882, DOI: 10.1038/embor.2010.153.
- Zhang, T., Kwiatkowski, N., Olson, C. M., Dixon-Clarke, S. E., Abraham, B. J., Greifenberg, A. K., *et al.*, 2016. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. *Nature Chemical Biology*, **12** (10): 876-884, DOI: 10.1038/nchembio.2166.
- Ziuganov, V., San Miguel, E., Neves, R. J., Longa, A., Fernandez, C., Amaro, R., *et al.*, 2000. Life span variation of the freshwater pearl shell: A model species for testing longevity mechanisms in animals. *Ambio*, **29** (2): 102-105, DOI: 10.1639/0044-7447.

(Edited by Qiu Yantao)